Quasi-Real Time Estimation of Angular Kinematics Using Single-Axis Accelerometers
نویسندگان
چکیده
In human movement modeling, the problem of multi-link kinematics estimation by means of inertial measurement units has been investigated by several authors through efficient sensor fusion algorithms. In this perspective a single inertial measurement unit per link is required. This set-up is not cost-effective compared with a solution in which a single-axis accelerometer per link is used. In this paper, a novel fast technique is presented for the estimation of the sway angle in a multi-link chain by using a single-axis accelerometer per segment and by setting the boundary conditions through an ad hoc algorithm. The technique, based on the windowing of the accelerometer output, was firstly tested on a mechanical arm equipped with a single-axis accelerometer and a reference encoder. The technique is then tested on a subject performing a squat task for the knee flexion-extension angle evaluation by using two single-axis accelerometers placed on the thigh and shank segments, respectively. A stereo-photogrammetric system was used for validation. RMSEs (mean ± std) are 0.40 ± 0.02° (mean peak-to-peak range of 147.2 ± 4.9°) for the mechanical inverted pendulum and 1.01 ± 0.11° (mean peak-to-peak range of 59.29 ± 2.02°) for the knee flexion-extension angle. Results obtained in terms of RMSE were successfully compared with an Extended Kalman Filter applied to an inertial measurement unit. These results suggest the usability of the proposed algorithm in several fields, from automatic control to biomechanics, and open new opportunities to increase the accuracy of the existing tools for orientation evaluation.
منابع مشابه
Adaptive Estimation of Measurement Bias in Three-Dimensional Field Sensors with Angular Rate Sensors: Theory and Comparative Experimental Evaluation
Three-axis magnetometers and three-axis accelerometers are widely used sensors for attitude estimation, yet their accuracy is limited by sensor measurement bias. This paper reports a novel methodology for estimating the sensor bias of three-axis field sensors (e.g. magnetometers and accelerometers). Our approach employs three-axis angular velocity measurements from an angular-rate gyroscope to ...
متن کاملHigh-Performance Robust Three-Axis Finite-Time Attitude Control Approach Incorporating Quaternion Based Estimation Scheme to Overactuated Spacecraft
With a focus on investigations in the area of overactuated spacecraft, a new high-performance robust three-axis finite-time attitude control approach, which is organized in connection with the quaternion based estimation scheme is proposed in the present research with respect to state-of-the-art. The approach proposed here is realized based upon double closed loops to deal with the angular rate...
متن کاملIn Use Parameter Estimation of Inertial Sensors by Detecting Multilevel Quasi-static States
We present an autoadaptive algorithm for in-use parameter estimation of MEMS inertial accelerometers and gyros using multilevel quasi-static states for greater accuracy and reliability. Multi-level quasi-static states are detected robustly using data from both gyros and accelerometers. Proper estimation of time-varying sensor parameters allows us to develop a mixed-reality real-time hand-held o...
متن کاملReal Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملFused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots
Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013